TIPP 2011: a few highlights...

Notes

- I attended only the first 3 days of the conference, therefore my take comes from a limited perspective...
- 9 parallel tracks at the conference, I hopped between:
 - Semiconductor detectors
 - Front-end electronics
 - Instrumentation for biological, medical and material research
- My 5 picks, somehow exotic:
 - ➤ One plenary talk on the future of CMOS and High-Performance Computing
 - ➤ A couple technologies alternative to Si-planar sensors (3D sensors, diamond)
 - > A couple examples of X-ray detectors (SOI, DEPFET for XFEL)

Beyond CMOS

K. Bernstein- IBM TJ Watson Research Center "The Evolution of CMOS and post-CMOS Electronics", plenary talk

- Despite the advances in technology and miniaturization, the basic building block of modern microprocessors is still... a binary switch!
- As the technology node scales down, CMOS processes are facing fundamental limitations, which will soon become quantum mechanical...

The Engine Driving The Digital Age

Ultimate Boundaries: Minimum Switching Energy

Switches going forward *naturally quantize their output* – can we exploit this in new architectures?

 ... but the challenge is still about keeping up with speed demands at low power consumption! There is a wealth of research towards the beyond-CMOS switch (not necessarily binary), involving nanotechnology and such...

A potential Delay-Energy minima exists at approximately 1E-29

3D silicon sensors

A. Mac Raighne – University of Glasgow "Characterisation of Glasgow/CNM double-sided 3D sensors"

- Electrodes are "pillars" implanted in sensor substrate: lateral depletion, lower depletion voltage, faster collection time \rightarrow less trapping, more rad-hard...
- ... but: complex process, yield issues, areas of inefficiency
- Double-sided approach has easier fabrication process (?), minimizes inefficiency regions
- Best performance in beam-test obtained with detector at an angle

Beam test on 3D n-type pixel sensor, 55 µm pitch

University of Glasgow

Charge collection efficiencies (150V)

Diamond detectors

M. Mikuz – University of Ljubljana & Josef Stefan Institute For the RD42 Collaboration

"Diamond Sensors for High Energy Radiation and Particle Detection"

- With respect to silicon, diamond shows lower leakage, higher mobility (faster signals), and is more radiation-hard
- Two sensor types:
 - > polycristalline (pCVD), exists in 12 cm wafer
 - ➤ single crystal (scCVD), exists only in ~cm² pieces
- All LHC experiments use diamond as beam monitors
- Proposed trackers:
 - CMS Pixel Luminosity Telescope (PLT)
 - ATLAS Diamond Beam Monitor (DBM)

CMS Pixel Luminosity Telescope

- · Dedicated, stand-alone luminosity monitor
 - Eight 3-plane telescopes each end of CMS
 - -1.60° pointing angle r = 4.8 cm, z = 175 cm
- Diamond pixel sensors active area:
 - 3.9 mm x 3.9 mm, scCVD diamond
- Count 3-fold coincidences fast-or signals (40 MHz)
- Full pixel readout pixel address, pulse height (1 kHz)
- > Stable 1% precision on bunch-by-bunch relative luminosity

Diamond pixel modules

TIPP, Chicago, June 11, 2011 Marko Mikuž: Diamond Sensors 21 TIPP, Chicago, June 11, 2011 Marko Mikuž: Diamond Sensors 2

Diamond Sensors

for High Energy Radiation and Particle Detection

University of Ljubljana & Jožef Stefan Institute Ljubljana, Slovenia for the CERN RD-42 Collaboration

TIPP 2011

Chicago, IL, USA June 9-14, 2011

CMS Pixel Luminosity Telescope

- Dedicated, stand-alone luminosity monitor
 - Eight 3-plane telescopes each end of CMS
 - -1.60° pointing angle r = 4.8 cm, z = 175 cm
- Diamond pixel sensors active area:
 - 3.9 mm x 3.9 mm, scCVD diamond
- Count 3-fold coincidences fast-or signals (40 MHz)
- Full pixel readout pixel address, pulse height (1 kHz)
- > Stable 1% precision on bunch-by-bunch relative luminosity

Diamond pixel modules

TIPP, Chicago, June 11, 2011 Marko Mikuž: Diamond Sensors 21 TIPP, Chicago, June 11, 2011 Marko Mikuž: Diamond Sensors

diamond sensor

SOI pixels for X-rays

A. Takeda - KEK

"High resolution X-ray Imaging Sensor with SOI CMOS technology"

SOI Pixel Detector

- Monolithic detector that integrates full CMOS electronics on a high-resistivity, fully-depleted substrate, no bump-bonding
- ½-reticle size imager, 17 μm pitch pixel with Correlated Double-Sampling (CDS)
- 260 µm thick, fully-depleted substrate, backilluminated
- Test with X-rays at various energies, energy resolution improves with cooling
- ... we are working on similar developments here at LBNL!

Energy Resolution

- Energy Spectrum @Room Temp.
 - ²⁴¹Am and Cu + Mo X-ray Target
- FWHM: 13.4 % @ 13.95 keV
- Sensor Capacitor: 10 fF

V sensor = 200 V Integration Time = 250 μs Back-illumination

• Fine Resolution & High Contrast! 20 keV X-rays room T, V_{dep} = 200 V 250 µs Int. x 500 fr * It is clear even by 100 fr. ** It depends on the number of photons.

2011.06/11 SAT TIPP2011 @ Chicago - Ayaki TAKEDA

X-ray Imaging of a small dried sardine taken by an INTPIX4 (3 images are combined).

DEPFETs for EU-XFEL

L. Andricek – MPI Halbleiterlabor, Munich
"DSSC – an X-ray Imager with Mega-Frame Readout Capabilities for
the European XFEL"

ILC-like beam structure:

10 Hz train, 2700 e⁻/train,
bunch spacing 220 ns

→ need 5 MHz frame
rate with storage of >500
frames/burst

 1 Mpixel, 2D X-ray cameras at the end stations, energy range 0.5-25 keV, need to handle large dynamic range: new proposed structure with variable gain

- Hexagonal pixel, 204x236µm pitch
- 130nm readout ASIC with 8-bit ADC and SRAM in pixel

